Source code for qci_client.optimization.data_converter
- """Functions for data conversion."""
- import logging
- import time
- import networkx as nx
- import numpy as np
- import scipy.sparse as sp
- from qci_client.optimization import utilities
- from qci_client.optimization import enum
- MEMORY_MAX: int = 8 * 1000000  
- [docs]
- def data_to_json(*, file: dict) -> dict:  
-     """
-     Converts data in file input into JSON-serializable dictionary that can be passed to Qatalyst REST API
-     Args:
-         file: file dictionary whose data of type numpy.ndarray, scipy.sparse.spmatrix, or networkx.Graph is to be converted
-     Returns:
-         file dictionary with JSON-serializable data
-     """
-     start_time_s = time.perf_counter()
-     file_config, file_type = utilities.get_file_config(file=file)
-     if file_type not in enum.FILE_TYPES_JOB_INPUTS:
-         input_file_types = [
-             input_file_type.value for input_file_type in enum.FILE_TYPES_JOB_INPUTS
-         ]
-         input_file_types.sort()
-         raise AssertionError(
-             f"unsupported file type, must be one of {input_file_types}"
-         )
-     data = file["file_config"][file_type.value]["data"]
-     if file_type == enum.FileType.GRAPH:
-         if not isinstance(data, nx.Graph):
-             raise AssertionError(
-                 f"file type '{file_type.value}' data must be type networkx.Graph"
-             )
-         file_config = {
-             **nx.node_link_data(data),
-             "num_edges": data.number_of_edges(),
-             "num_nodes": data.number_of_nodes(),
-         }
-     elif file_type in enum.FILE_TYPES_JOB_INPUTS_MATRIX:
-         if isinstance(data, nx.Graph):
-             raise AssertionError(
-                 f"file type '{file_type.value}' does not support networkx.Graph data"
-             )
-         data_ls = []
-         if sp.isspmatrix_dok(data):
-             for idx, val in zip(data.keys(), data.values()):
-                 
-                 
-                 data_ls.append({"i": int(idx[0]), "j": int(idx[1]), "val": float(val)})
-         elif sp.isspmatrix(data) or isinstance(data, np.ndarray):
-             data = sp.coo_matrix(data)
-             for i, j, val in zip(
-                 data.row.tolist(), data.col.tolist(), data.data.tolist()
-             ):
-                 data_ls.append({"i": i, "j": j, "val": val})
-         else:
-             raise ValueError(
-                 f"file type '{file_type.value}' only supports numpy.ndarray and "
-                 f"scipy.sparse.spmatrix data types, got '{type(data)}'"
-             )
-         file_config = {"data": data_ls}
-         rows, cols = data.get_shape()
-         if file_type == enum.FileType.CONSTRAINTS:
-             
-             file_config.update({"num_constraints": rows, "num_variables": cols - 1})
-         else:
-             
-             file_config["num_variables"] = rows
-     else:
-         
-         file_config = file["file_config"][file_type.value]
-     logging.debug(
-         "Time to convert data to json: %s s.", time.perf_counter() - start_time_s
-     )
-     return {
-         "file_name": file.get("file_name", f"{file_type.value}.json"),
-         "file_config": {file_type.value: file_config},
-     }