Source code for eqc_models.ml.classifierqboost
- import os
- import sys
- import time
- import datetime
- import json
- import warnings
- from functools import wraps
- import numpy as np
- from sklearn.tree import DecisionTreeClassifier
- from sklearn.naive_bayes import GaussianNB
- from sklearn.linear_model import LogisticRegression
- from sklearn.gaussian_process import GaussianProcessClassifier
- from sklearn.gaussian_process.kernels import RBF
- from eqc_models.ml.classifierbase import ClassifierBase
- def timer(func):
-     @wraps(func)
-     def wrapper(*args, **kwargs):
-         beg_time = time.time()
-         val = func(*args, **kwargs)
-         end_time = time.time()
-         tot_time = end_time - beg_time
-         print(
-             "Runtime of %s: %0.2f seconds!"
-             % (
-                 func.__name__,
-                 tot_time,
-             )
-         )
-         return val
-     return wrapper
- class WeakClassifierDct:
-     def __init__(
-         self,
-         fea_ind_list,
-         X_train,
-         y_train,
-         max_depth=10,
-         min_samples_split=100,
-     ):
-         assert X_train.shape[0] == len(y_train)
-         self.fea_ind_list = fea_ind_list
-         self.X_train = X_train
-         self.y_train = y_train
-         self.clf = DecisionTreeClassifier(
-             max_depth=max_depth,
-             min_samples_split=min_samples_split,
-             random_state=0,
-         )
-     def train(self):
-         X_tmp = self.X_train.transpose()[self.fea_ind_list].transpose()
-         self.clf.fit(X_tmp, self.y_train)
-     def predict(self, X):
-         X_tmp = X.transpose()[self.fea_ind_list].transpose()
-         return self.clf.predict(X_tmp)
- class WeakClassifierNB:
-     def __init__(self, fea_ind_list, X_train, y_train):
-         assert X_train.shape[0] == len(y_train)
-         self.fea_ind_list = fea_ind_list
-         self.X_train = X_train
-         self.y_train = y_train
-         self.clf = GaussianNB()
-     def train(self):
-         X_tmp = self.X_train.transpose()[self.fea_ind_list].transpose()
-         self.clf.fit(X_tmp, self.y_train)
-     def predict(self, X):
-         X_tmp = X.transpose()[self.fea_ind_list].transpose()
-         return self.clf.predict(X_tmp)
- class WeakClassifierLG:
-     def __init__(self, fea_ind_list, X_train, y_train):
-         assert X_train.shape[0] == len(y_train)
-         self.fea_ind_list = fea_ind_list
-         self.X_train = X_train
-         self.y_train = y_train
-         self.clf = LogisticRegression(random_state=0)
-     def train(self):
-         X_tmp = self.X_train.transpose()[self.fea_ind_list].transpose()
-         self.clf.fit(X_tmp, self.y_train)
-     def predict(self, X):
-         X_tmp = X.transpose()[self.fea_ind_list].transpose()
-         return self.clf.predict(X_tmp)
- class WeakClassifierGP:
-     def __init__(self, fea_ind_list, X_train, y_train):
-         assert X_train.shape[0] == len(y_train)
-         self.fea_ind_list = fea_ind_list
-         self.X_train = X_train
-         self.y_train = y_train
-         self.clf = GaussianProcessClassifier(
-             kernel=1.0 * RBF(1.0),
-             random_state=0,
-         )
-     def train(self):
-         X_tmp = self.X_train.transpose()[self.fea_ind_list].transpose()
-         self.clf.fit(X_tmp, self.y_train)
-     def predict(self, X):
-         X_tmp = X.transpose()[self.fea_ind_list].transpose()
-         return self.clf.predict(X_tmp)
- [docs]
- class QBoostClassifier(ClassifierBase):
-     """An implementation of QBoost classifier that uses QCi's Dirac-3.
-     Parameters
-     ----------
-     relaxation_schedule: Relaxation schedule used by Dirac-3;
-     default: 2.
-     num_samples: Number of samples used by Dirac-3; default: 1.
-     lambda_coef: A penalty multiplier; default: 0.
-     weak_cls_schedule: Weak classifier schedule. Is either 1, 2,
-     or 3; default: 2.
-     weak_cls_type: Type of weak classifier
-         - dct: Decison tree classifier
-         - nb: Naive Baysian classifier
-         - lg: Logistic regression
-         - gp: Gaussian process classifier
-     default: dct.
-     weak_max_depth: Max depth of the tree. Applied only when
-     weak_cls_type="dct". Default: 10.
-     weak_min_samples_split: The minimum number of samples required
-     to split an internal node. Applied only when
-     weak_cls_type="dct". Default: 100.
-     Examples
-     -----------
-     >>> from sklearn import datasets
-     >>> from sklearn.preprocessing import MinMaxScaler
-     >>> from sklearn.model_selection import train_test_split
-     >>> iris = datasets.load_iris()
-     >>> X = iris.data
-     >>> y = iris.target
-     >>> scaler = MinMaxScaler()
-     >>> X = scaler.fit_transform(X)
-     >>> for i in range(len(y)):
-     ...     if y[i] == 0:
-     ...         y[i] = -1
-     ...     elif y[i] == 2:
-     ...         y[i] = 1
-     >>> X_train, X_test, y_train, y_test = train_test_split(
-     ...     X,
-     ...     y,
-     ...     test_size=0.2,
-     ...     random_state=42,
-     ... )
-     >>> from eqc_models.ml.classifierqboost import QBoostClassifier
-     >>> obj = QBoostClassifier(
-     ...     relaxation_schedule=2,
-     ...     num_samples=1,
-     ...     lambda_coef=0.0,
-     ... )
-     >>> from contextlib import redirect_stdout
-     >>> import io
-     >>> f = io.StringIO()
-     >>> with redirect_stdout(f):
-     ...    obj = obj.fit(X_train, y_train)
-     ...    y_train_prd = obj.predict(X_train)
-     ...    y_test_prd = obj.predict(X_test)
-     """
-     def __init__(
-         self,
-         relaxation_schedule=2,
-         num_samples=1,
-         lambda_coef=0,
-         weak_cls_schedule=2,
-         weak_cls_type="lg",
-         weak_max_depth=10,
-         weak_min_samples_split=100,
-     ):
-         super(QBoostClassifier).__init__()
-         assert weak_cls_schedule in [1, 2, 3]
-         assert weak_cls_type in ["dct", "nb", "lg", "gp"]
-         self.relaxation_schedule = relaxation_schedule
-         self.num_samples = num_samples
-         self.lambda_coef = lambda_coef
-         self.weak_cls_schedule = weak_cls_schedule
-         self.weak_cls_type = weak_cls_type
-         self.weak_max_depth = weak_max_depth
-         self.weak_min_samples_split = weak_min_samples_split
-         self.h_list = []
-         self.classes_ = None
-     @timer
-     def _build_weak_classifiers(self, X, y):
-         n_records = X.shape[0]
-         n_dims = X.shape[1]
-         assert len(y) == n_records
-         self.h_list = []
-         for l in range(n_dims):
-             if self.weak_cls_type == "dct":
-                 weak_classifier = WeakClassifierDct(
-                     [l],
-                     X,
-                     y,
-                     self.weak_max_depth,
-                     self.weak_min_samples_split,
-                 )
-             elif self.weak_cls_type == "nb":
-                 weak_classifier = WeakClassifierNB([l], X, y)
-             elif self.weak_cls_type == "lg":
-                 weak_classifier = WeakClassifierLG([l], X, y)
-             elif self.weak_cls_type == "gp":
-                 weak_classifier = WeakClassifierGP([l], X, y)
-             weak_classifier.train()
-             self.h_list.append(weak_classifier)
-         if self.weak_cls_schedule >= 2:
-             for i in range(n_dims):
-                 for j in range(i + 1, n_dims):
-                     if self.weak_cls_type == "dct":
-                         weak_classifier = WeakClassifierDct(
-                             [i, j],
-                             X,
-                             y,
-                             self.weak_max_depth,
-                             self.weak_min_samples_split,
-                         )
-                     elif self.weak_cls_type == "nb":
-                         weak_classifier = WeakClassifierNB([i, j], X, y)
-                     elif self.weak_cls_type == "lg":
-                         weak_classifier = WeakClassifierLG([i, j], X, y)
-                     elif self.weak_cls_type == "gp":
-                         weak_classifier = WeakClassifierGP([i, j], X, y)
-                     weak_classifier.train()
-                     self.h_list.append(weak_classifier)
-         if self.weak_cls_schedule >= 3:
-             for i in range(n_dims):
-                 for j in range(i + 1, n_dims):
-                     for k in range(j + 1, n_dims):
-                         if self.weak_cls_type == "dct":
-                             weak_classifier = WeakClassifierDct(
-                                 [i, j, k],
-                                 X,
-                                 y,
-                                 self.weak_max_depth,
-                                 self.weak_min_samples_split,
-                             )
-                         elif self.weak_cls_type == "nb":
-                             weak_classifier = WeakClassifierNB(
-                                 [i, j, k], X, y
-                             )
-                         elif self.weak_cls_type == "lg":
-                             weak_classifier = WeakClassifierLG(
-                                 [i, j, k], X, y
-                             )
-                         elif self.weak_cls_type == "gp":
-                             weak_classifier = WeakClassifierGP(
-                                 [i, j, k], X, y
-                             )
-                         weak_classifier.train()
-                         self.h_list.append(weak_classifier)
-         return
- [docs]
-     def fit(self, X, y):
-         """
-         Build a QBoost classifier from the training set (X, y).
-         Parameters
-         ----------
-         X : {array-like, sparse matrix} of shape (n_samples, n_features)
-         The training input samples.
-         y : array-like of shape (n_samples,)
-         The target values.
-         Returns
-         -------
-         Response of Dirac-3 in JSON format.
-         """
-         assert X.shape[0] == y.shape[0], "Inconsistent sizes!"
-         assert set(y) == {-1, 1}, "Target values should be in {-1, 1}"
-         self.classes_ = set(y)
-         J, C, sum_constraint = self.get_hamiltonian(X, y)
-         assert J.shape[0] == J.shape[1], "Inconsistent hamiltonian size!"
-         assert J.shape[0] == C.shape[0], "Inconsistent hamiltonian size!"
-         self.set_model(J, C, sum_constraint)
-         sol, response = self.solve()
-         assert len(sol) == C.shape[0], "Inconsistent solution size!"
-         self.params = self.convert_sol_to_params(sol)
-         assert len(self.params) == len(self.h_list), "Inconsistent size!"
-         return response
- [docs]
-     def predict_raw(self, X: np.array):
-         """
-         Predict raw output of the classifier for input X.
-         Parameters
-         ----------
-         X : {array-like, sparse matrix} of shape (n_samples, n_features)
-         Returns
-         -------
-         y : ndarray of shape (n_samples,)
-         The predicted raw output of the classifier.
-         """
-         n_records = X.shape[0]
-         n_classifiers = len(self.h_list)
-         y = np.zeros(shape=(n_records), dtype=np.float32)
-         h_vals = np.array(
-             [self.h_list[i].predict(X) for i in range(n_classifiers)]
-         )
-         y = np.tensordot(self.params, h_vals, axes=(0, 0))
-         return y
- [docs]
-     def predict(self, X: np.array):
-         """
-         Predict classes for X.
-         Parameters
-         ----------
-         X : {array-like, sparse matrix} of shape (n_samples, n_features)
-         Returns
-         -------
-         y : ndarray of shape (n_samples,)
-         The predicted classes.
-         """
-         y = self.predict_raw(X)
-         y = np.sign(y)
-         return y
- [docs]
-     @timer
-     def get_hamiltonian(
-         self,
-         X: np.array,
-         y: np.array,
-     ):
-         self._build_weak_classifiers(X, y)
-         
-         print("Built %d weak classifiers!" % len(self.h_list))
-         
-         n_classifiers = len(self.h_list)
-         n_records = X.shape[0]
-         J = np.zeros(
-             shape=(n_classifiers, n_classifiers), dtype=np.float32
-         )
-         C = np.zeros(shape=(n_classifiers,), dtype=np.float32)
-         h_vals = np.array(
-             [self.h_list[i].predict(X) for i in range(n_classifiers)]
-         )
-         for i in range(n_classifiers):
-             for j in range(n_classifiers):
-                 J[i][j] = sum(h_vals[i] * h_vals[j])
-                 if i == j:
-                     J[i][i] += self.lambda_coef
-             C[i] = -2.0 * sum(y * h_vals[i])
-         C = C.reshape((n_classifiers, 1))
-         return J, C, 1.0
- [docs]
-     def convert_sol_to_params(self, sol):
-         return np.array(sol)